본문 바로가기

Vision3

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a arxiv.org Sementic Segmentation 이란 위 그림(오른쪽)과 같이 이미지 혹은 영상 속 .. 2022. 1. 19.
SENet(Squeeze-and-Excitation Networks) SENet Squeeze-and-Excitation Networks The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broa arxiv.org 어떤 문제를 맞닥뜨렸을때, 그리고 그 문제를 머신러닝으로 해결하려고 하면 아직까지도 막연하게 '잘 되지 않을까?'라는 생각이 조금은 남아있는 것 같습니다. 하지만 실제.. 2022. 1. 5.
Pseudo-LiDAR from Visual Depth Estimation:Bridging the Gap in 3D Object Detection for Autonomous Driving Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving 3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stere arxiv.org 자율주행은 굉장히 많은 기술들이 합쳐진 하나의.. 2021. 11. 21.